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Probability measures with finite second-order moments

Let d ∈ N∗ and Ω ⊂ Rd an open domain.

Let P2(Ω) denote the set of probability measures u on Ω with finite
second-order moments, i.e.∫

Ω

u(dx) = 1,
∫

Ω

(1 + |x |)2 u(dx) < +∞.

Example: Let ρ ∈ L1(Ω) such that

ρ ≥ 0,
∫

Ω

ρ(x) dx = 1,
∫

Ω

(1 + |x |)2ρ(x) dx < +∞. (1)

Then, the probability measure u(dx) := ρ(x) dx belongs to P2(Ω).
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Wasserstein space

The 2-Wasserstein (or Kantorovich-Rubinstein) metric is a distance
function defined between two probability measures u1, u2 ∈ P2(Ω) and is
denoted by

W2(u1, u2).

The set (P2(Ω),W2) then defines a metric space, called the Wasserstein
space.

Its precise definition will come later... Patience!

I first would like to explain to you some interesting properties of this distance
with respect to model-reduction of parametric transport dominated
problems.
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Interpolation in the Wasserstein or L2(Ω) space
Let ρ1, ρ2 ∈ L2(Ω) ∩ L1(Ω) which satisfy (1). Define u1, u2 ∈ P2(Ω) such that
ui ( dx) = ρi (x) dx for i = 1, 2.

Let t ∈ [0, 1] and consider the two following problems:

• Interpolation in the L2(Ω) space: Find ρL2

t ∈ L2(Ω) such that

ρL2

t = argmin
ρ∈L2(Ω)

(1− t)‖ρ− ρ1‖2
L2(Ω) + t‖ρ− ρ2‖2

L2(Ω).

Then, we all know that the solution is ρL2

t is the barycentric combination
of ρ1 and ρ2, i.e.

ρL2

t := (1− t)ρ1 + tρ2.

• Interpolation in the Wasserstein space: Find ut ∈ P2(Ω) such that

ut = argmin
u∈P2(Ω)

(1− t)W2(u, u1)2 + tW2(u, u2)2.

The measure ut is unique and is called the McCann’s interpolant
between u1 and u2. It holds that ut ( dx) = ρ

W2
t (x) dx for some

ρ
W2
t ∈ L1(Ω).

What does ρL2

t and ρW2
t look like?
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Comparison between the Wasserstein and L2(Ω) interpolation
[Kolouri et al. 2016]

ρ
W2
t ρL2

t

Interesting property of the Wasserstein metric for transport-dominated
problems:
If ρ2 = ρ1(· − c) for some c ∈ Rd , then it holds that

ρ
W2
t = ρ1(· − tc).
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Barycenters in the Wasserstein orL2(Ω) space
Let n ∈ N∗ and U := (u1, u2, · · · , un) ∈ P2(Ω)n. Let Λ := (λ1, · · · , λn) ∈ [0, 1]n

such that
∑n

i=1 λi = 1, and consider the minimization problem:

Find Bar(U,Λ) ∈ P2(Ω) such that

Bar(U,Λ) = argmin
u∈P2(Ω)

n∑
i=1

λiW2(u, ui )
2.

The measure Bar(U,Λ) is unique and is called the Wasserstein barycenter
of U with weights Λ.

This object is the Wasserstein counterpart of the L2(Ω) barycenter of a set of
functions (ρ1, · · · , ρn) ∈ L2(Ω)n with barycentric weight Λ. Indeed,

ρL2

Λ :=
n∑

i=1

λiρi ,

is equivalently the unique minimizer of

ρL2

Λ = argmin
ρ∈L2(Ω)

n∑
i=1

λi‖ρ− ρi‖2
L2(Ω).
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Wasserstein barycenters
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Wasserstein metric: optimal transport

Let u1, u2 ∈ P2(Ω). Then,

W2(u1, u2)2 := inf
π ∈ P(Ω× Ω)∫

y∈Ω
π(dx , dy) = u1(dx)∫

x∈Ω
π(dx , dy) = u2(dy)

∫
Ω×Ω

|x − y |2 π(dx , dy).

where P (Ω× Ω) is the set of probability measures on Ω× Ω.

Kantorovich formulation of optimal transport problem

Several numerical methods exist for solving such problems and computing
Wasserstein barycenters: linear programming, auction algorithm, entropic
regularization...
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Special case of dimension 1

Let us focus on the special case where d = 1, where Wasserstein distance
and Wasserstein barycenters can be computed explicitly. From now on, let us
now assume that Ω ⊂ R is an interval of R.

Let u ∈ P2(Ω). Let cdfu : Ω→ [0, 1] be the cumulative distribution of u,
defined by:

∀x ∈ Ω, cdfu(x) :=

∫ x

−∞
u(dy),

Let icdfu : [0, 1]→ Ω ⊂ R be the inverse cumulative distribution of u, the
generalized inverse of cdfu , defined as follows:

∀s ∈ [0, 1], icdfu(s) := inf {x ∈ Ω, cdfu(x) > s} .

Let us denote by I := {icdfu, u ∈ P2(Ω)}. Then, it holds that I is a convex
subset of L2(0, 1).
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Wasserstein distance and barycenter in dimension 1

For all u, v ∈ P2(Ω), the 2-Wasserstein distance between u and v is equal to

W2(u, v) := ‖icdfu − icdfv‖L2(0,1).

Let U := (u1, · · · , un) ∈ P2(Ω)n and Λ := (λ1, · · · , λn) ∈ [0, 1]n such that∑n
i=1 λi = 1.

The Wasserstein barycenter of the family U with barycentric weights Λ is the
unique measure Bar(U,Λ) ∈ P2(Ω) such that

icdfBar(U,Λ) =
n∑

i=1

λi icdfui ,
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Parametric conservative transport equations

Consider a parametric conservative transport equation of the form: t ∈ [0,T ]
with T > 0, x ∈ Ω ⊂ R.

∂tρµ(t , x)− ∂x F (µ, ρµ(t , x)) = 0,
ρµ(t = 0, x) = ρµ,0(x),
+boundary conditions,

(2)

where µ is a vector of parameters belonging to a set P ⊂ Rp.

Assumption: Assume that for all µ ∈ P, t ∈ [0,T ],

ρµ(t , ·) ≥ 0,
∫
R
ρµ(t , ·) = 1 and

∫
R

(1 + |x |)2ρµ(t , x) dx < +∞.

Then, let uµ(t)( dx) = ρµ(t , x) dx the associated probability measure so that
uµ(t) ∈ P2(Ω).
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Example: pure transport one-dimensional equation

Consider the following simple pure one-dimensional transport equation:
t ∈ [0,T ] with T > 0, x ∈ Ω := R.{

∂tρµ(t , x)− µ∂xρµ(t , x) = 0,
ρµ(t = 0, x) = ρ0(x),

(3)

where µ ∈ P := [µmin, µmax] ⊂ R and u0( dx) := ρ0(x) dx ∈ P2(Ω).

The solution to (5) is well-known to be

ρµ(t , x) := ρ0(x + µt), .
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Solution set

Problem: Build a reduced-order model approximation of the solution set

M := {ρµ(t , ·), µ ∈ P, t ∈ [0,T ]}

Assume for the sake of simplicity thatM⊂ L2(Ω).
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Linear approximation methods

Assume thatM⊂ V where V is a Hilbert space (for instance V = L2(Ω)).

A classical method to construct reduced-order models consists in looking for
a n-dimensional linear subspace Vn of V (with n small) so that the error

distV (M,Vn) := sup
u∈M

‖u − ΠVn u‖V

is as small as possible (here ΠVn denotes the orthogonal projection of V onto
Vn).

For a fixed value of n, the best possible approximation error is given by the
Kolmogorov n-width of the setM, defined as

dV
n (M) := inf

Vn ⊂ V ,
dimVn = n

distV (M,Vn).

Greedy algorithms used in reduced basis methods provides a practical way
to find a quasi-optimal linear subspace Vn in many situations.
[DeVore et al., 2013]
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Slow decay of the Kolmogorov n-width for hyperbolic equations

For elliptic and parabolic equations,
(
dV

n (M)
)

n∈N∗ decays fast as n goes to
infinity. [Cohen et al., 2016]

Problem! For transport equations,
(
dV

n (M)
)

n∈N∗ may decay quite slowly as
n goes to infinity.

Example: one-dimensional pure transport equation [Ohlberger, Rave, 2016]. There
exists c > 0 such that for all n 3 N∗,

dL2(Ω)
n (M) ≥ cn−1/2

Nonlinear approximation methods have to be used!

Non-exhaustive list of related works:
Billaud-Friess, Cagniart, Carlberg, Falco, Guignard, Maday, Mehrmann, Musharbash, Nobile, Pagliantini,

Peherstorfer, Stamm, Welper, Willcox...
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Yet another possible viewpoint... with Wasserstein!

New solution set: Let

M̃ := {uµ(t), µ ∈ P, t ∈ [0,T ]} ⊂ P2(Ω),

and, motivated by the properties of the Wasserstein metric and its expression
for one-dimensional problems, let us rather consider the set composed of the
inverse cumulative distribution functions for all u ∈ M̃

T :=
{

icdfu, u ∈ M̃
}
⊂ I ⊂ L2(0, 1)

Let’s try to reduce the transformed set T in L2(0, 1) rather than the original
solution setM in L2(Ω)!
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Wasserstein: case of the pure transport equation{
∂tρµ(t , x)− µ∂xρµ(t , x) = 0,
ρµ(t = 0, x) = ρ0(x),

(4)

test test2 test3

Figure: Pure transport equation

It holds that
∀s ∈ (0, 1), icdfuµ(t)(s) := icdfu0 (s)− µt .

As a consequence,
dL2(0,1)

n (T ) = 0, ∀n ≥ 2.
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Case of inviscid Burgers equation
For t ∈ [0,T ] with T = 5, x ∈ Ω := (−1, 4).{

∂tρµ(t , x)− 1
2∂x

(
ρµ

2) (t , x) = 0,
ρµ(t = 0, x) = ρµ,0(x),

(5)

with

ρµ,0(x) :=


0 if − 1 ≤ x < 0,
µ if 0 ≤ x < 1

µ
,

0 if 1
µ
≤ x ≤ 4.

where µ ∈ P := [0.5, 3].

test test2 test3

Figure: Inviscid Burgers equation (µ = 1)
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Case of inviscid Burgers equation
Proposition (VE,Lombardi,Mula, Vialard, 2020)
There exsits C > 0 such that for all n ∈ N∗,

dL2(0,1)
n (T ) ≤ Cn−21/10

No proof of lower bounds on dL2(Ω)
n (M), but numerical results that seem to

indicate that the latter may decay slower as n goes to infinity than dL2(0,1)
n (T ).
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What next?

This suggests the development of algorithms which
• exploit this structure and the properties of the Wasserstein metric;
• can be transposed to problems in dimension d > 1;

in order to construct reduced-order models.

Computation of a selection of snapshots in the offline phase : Let
N ∈ N∗ (possibly large), choose µ1, · · · , µN ∈ P and t1, · · · , tN ∈ [0,T ], and
define the trial set of N snapshots. For all 1 ≤ i ≤ N, denote by ui := uµi (ti )
and by

M̃trial := {uµi (ti ), i = 1, · · · ,N} = {ui , i = 1, · · · ,N} .
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Tangent PCA algorithm: offline phase
The first method we consider is the so-called tangent PCA, and is based on
a POD method.

Define u ∈ P2(Ω) by

u =
1
N

N∑
i=1

ui

and consider the set of functions

icdfui − icdfu ∈ L2(0, 1), i = 1, · · · ,N.

Compute the n first PCA/POD modes of this set of functions, denoted by
f1, · · · , fn ∈ L2(0, 1) and for all i = 1, · · · ,N, compute

c i
k := 〈icdfui − icdfu, fk 〉L2(0,1), ∀k = 1, · · · , n,

so that
n∑

k=1

c i
k fk = ΠSpan{f1,··· ,fn} (icdfui − icdfu) and

icdfui ≈ icdfu +
n∑

k=1

c i
k fk = icdfu + ΠSpan{f1,··· ,fn} (icdfui − icdfu) .

Store (fk )1≤k≤n and (c i
k )1≤k≤n,1≤i≤N .
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tangent PCA algorithm: online phase

For all 1 ≤ k ≤ n, let us consider an interpolation ck : P × [0,T ]→ R so that
for all 1 ≤ i ≤ N, ck (µi , ti ) = c i

k .

For µ ∈ P, t ∈ [0,T ], approximate uµ(t) by un
µ(t) defined so that

icdfun
µ(t) = icdfu +

n∑
k=1

ck (µ, t)fk . (6)
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tangent PCA algorithm: pros and cons

Advantages:
• optimality of the PCA!
• extendable to higher dimension, exploiting the fact that the Wasserstein

space has the structure of a Riemannian manifold.

Problem: Such a method is not robust. Indeed, all functions fk ∈ L2(0, 1) but
there is no guarantee that

icdfu +
n∑

k=1

ck (µ, t)fk

belongs to I := {icdfu, u ∈ P2(Ω)}. In other words, un
µ(t) may not be

well-defined via formula (6).

Such a problem can in principle be solved (even in higher dimension) using
the so-called geodesic PCA[Bigot et al., 2017]. However, computing the geodesic
PCA is very expensive from a computational point of view.

Need for a more robust and cheap numerical strategy...
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Barycentric Greedy algorithm: main ingredients

The second method we consider is based on a greedy algorithm and on the
fact that

I := {icdfu, u ∈ P2(R}

is a closed convex subset of L2(0, 1).

For all n ∈ N∗, define the set of barycentric weights

Σn :=

{
Λ := (λ1, · · · , λn) ∈ [0, 1]n,

n∑
i=1

λi = 1

}
.
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Barycentric Greedy algorithm: offline phase

The Barycentric greedy algorithm is an iterative algorithm which reads as
follows:

• Initialization: Choose 1 ≤ i1, i2 ≤ N such that

(i1, i2) ∈ argmax
1≤i,j≤N

W2(ui , uj )
2.

Define U2 := (ui1 , ui2 ) and set n = 2.

• Iteration n ≥ 2:
Choose 1 ≤ in+1 ≤ N such that

in+1 ∈ argmax
1≤i≤N

min
Λ∈Σn

W2 (ui ,Bar(Un,Λ))2

where Bar(Un,Λ) denotes the Wasserstein barycenter of the family Un

with barycentric weights Λ.
Define Un+1 := (ui1 , ui2 , · · · , uin+1 ) and set n := n + 1.
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Barycentric Greedy algorithm: offline phase

The Barycentric greedy algorithm is an iterative algorithm which reads as
follows:

• Initialization: Choose 1 ≤ i1, i2 ≤ N such that

(i1, i2) ∈ argmax
1≤i,j≤N

∥∥icdfui − icdfuj

∥∥2
L2(0,1)

.

Define U2 := (ui1 , ui2 ) and set n = 2.

• Iteration n ≥ 2:
Choose 1 ≤ in+1 ≤ N such that

in+1 ∈ argmax
1≤i≤N

min
Λ:=(λk )1≤k≤n∈Σn

∥∥∥∥∥icdfui −
n∑

k=1

λk icdfuik

∥∥∥∥∥
2

L2(0,1)

Define Un+1 := (ui1 , ui2 , · · · , uin+1 ) and set n := n + 1.

Each step of the greedy algorithm only requires the minimization of a
quadratic functional on a convex set defined by affine constraints.
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Barycentric Greedy algorithm: offline phase

For fixed n ∈ N∗, store Un := (ui1 , · · · , uin ) and for all i = 1, · · · ,N, store
Λi := (λi

k )1≤k≤n ∈ Σn such that

Λi ∈ argmin
Λ∈Σn

W2 (ui ,Bar(Un,Λ))2 .

Let Λ : P × [0,T ]→ Σn be an interpolation, i.e. a function such that for all
1 ≤ i ≤ N,

Λ(µi , ti ) = Λi .
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Barycentric Greedy algorithm: online phase

For given µ ∈ P and t ∈ [0,T ], compute un
µ(t) ∈ P2(Ω) as the Wasserstein

barycenter of the family Un with barycentric weights Λ(µ, t), i.e.

un
µ(t) = Bar(Un,Λ(µ, t)).

This amounts to computing

icdfun
µ(t) =

n∑
k=1

λk (µ, t)icdfuik
.
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Barycentric Greedy algorithms: pros and cons

Drawback: No optimality or quasi-optimality guarantee of such a barycentric
greedy procedure.

Advantages:
• The method is robust since I is a closed convex subset of L2(0, 1);
• It can be extended to higher dimension d > 1;
• It can be generalised to other metric spaces.
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Numerical s

Inviscid Burger’s equation

∂tρµ +
1
2
∂x (ρ2

µ) = 0

Figure: Errors in natural norms (left) and H−1 norm (right) (average over the set of
parameters)
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Numerical tests
Inviscid Burger’s equation

∂tρµ +
1
2
∂x (ρ2

µ) = 0

test

Figure: Inviscid Burgers equation
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Numerical tests

Viscous Burger’s equation

∂tρµ +
1
2
∂x (ρ2

µ)− ν∂2
xρµ = 0

Figure: Errors in natural norms (left) and H−1 norm (right) (average over the set of
parameters)
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Numerical tests
Viscous Burger’s equation

∂tρµ,ν +
1
2
∂x (ρ2

µ,ν)− ν∂2
xρµ,ν = 0

test

Figure: Viscous Burgers equation
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Conclusions

• Nonlinear approximation methods in the Wasserstein space (which is a
metric space and not a vectorial spaces) for the reduction of
transport-dominated problems.

• Theoretical result on the decay of the Kolmogorov n-width of the
transformed set of solutions.

• Two numerical methods: (i) tangent PCA method (ii) Wasserstein
barycenters together with a barycentric greedy algorithm.

• Advantages: the methods are non-intrusive, and enjoy the nice
interpolation properties of the Wasserstein metric with respect to
transport-dominated problems.
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Persectives

• Extension to higher dimension and non-conservative transport
equations.

• Acceleration of the offline phase.
• A posteriori error estimators.
• How can we introduce back the PDE in the approximation scheme?
• Such an approach can be extended to general metric spaces. How to

choose (and compute) the best (or a quasi-best) metric space
associated to a solution set? Can we learn the metric?
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